

ELEKTROMOBILITÄT – CRASHSICHERHEIT.

18. SYMPOSIUM DES STADTFEUERWEHRVERBANDES MÜNCHEN, 07.NOV 2015

ELEKTROMOBILITÄT - CRASHSICHERHEIT. AGENDA.

- Hybrid-/Elektrofahrzeuge Varianten
- Erkennung von E-Fahrzeugen
- Hochvoltkomponenten am Beispiel des BMW i3
- Einbaulagen Hochvoltspeicher
- Gefährdungen bei Fahrzeugen mit Hochvolt-Energiespeicher
- Schutzmaßnahmen an elektrifizierten Fahrzeugen
- Systemverhalten im Crash / Unfälle
- BMW Rettungsdokumente
- weitere Informationsquellen

ELEKTROMOBILITÄT - CRASHSICHERHEIT. ELEKTRIFIZIERTE FAHRZEUGE - VARIANTEN.

HEV – HYBRID ELECTRIC VEHICLE

VERBRENNUNGSMOTOR + ELEKTROMOTOR + KLEINER HOCHVOLTSPEICHER

PHEV - PLUG IN HYBRID ELECTRIC VEHICLE

VERBRENNUNGSMOTOR + ELEKTROMOTOR + HOCHVOLTSPEICHER + LADESTECKDOSE

2013: BMW i3 / mit Rangeextender 2014: BMW i8 ab 2015: X5 Plug in Hybrid

ELEKTROMOBILITÄT - CRASHSICHERHEIT. ELEKTRIFIZIERTE FAHRZEUGE - VARIANTEN.

BEV – BATTERY ELECTRIC VEHICLE

ELEKTROMOTOR + HOCHVOLTSPEICHER + LADESTECKDOSE

2009: MINI E

2011: BMW Active E

2013: BMW i3 / ohne Rangeextender

ELEKTROMOBILITÄT - CRASHSICHERHEIT. ERKUNDUNG / FAHRZEUGIDENTIFIZIERUNG.

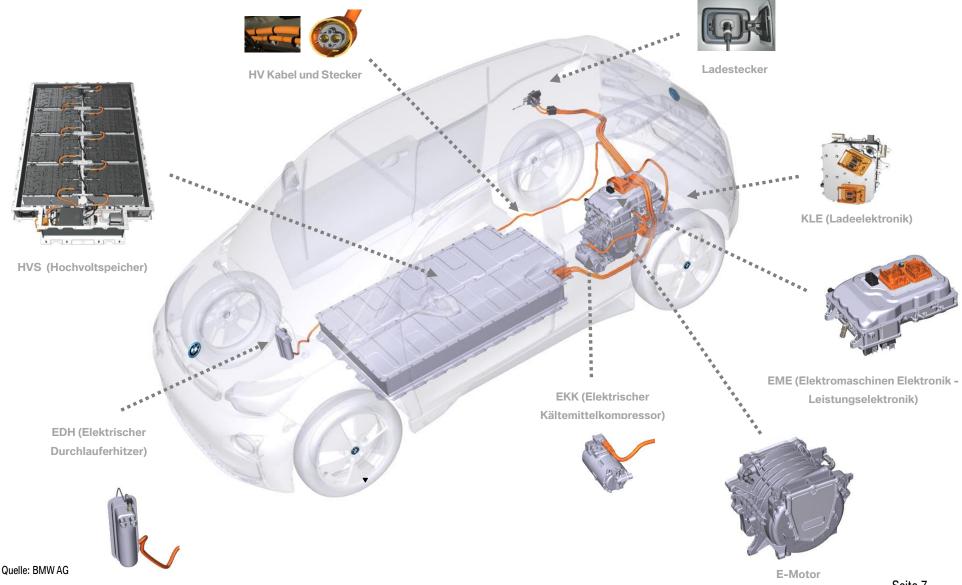
- Die Typbezeichnungen am Fahrzeugheck wie z.B. Hybrid, Electric Drive oder zus. Beschriftungen, z. B. am Kotflügel weisen eventuell darauf hin.
- Verfügt das Fahrzeug über keine derartige Typbezeichnung, können weitere Merkmale auf ein Fahrzeug mit HV-System hinweisen:
 - Elektrischer Ladeanschluss
 - orangefarbene Hochvoltleitungen
 - Warnaufkleber an elektrischen HV-Komponenten
 - Ladeanzeige im Kombiinstrument
 - Kennzeichnungen auf der Instrumententafel
 - Keine Abgasanlage

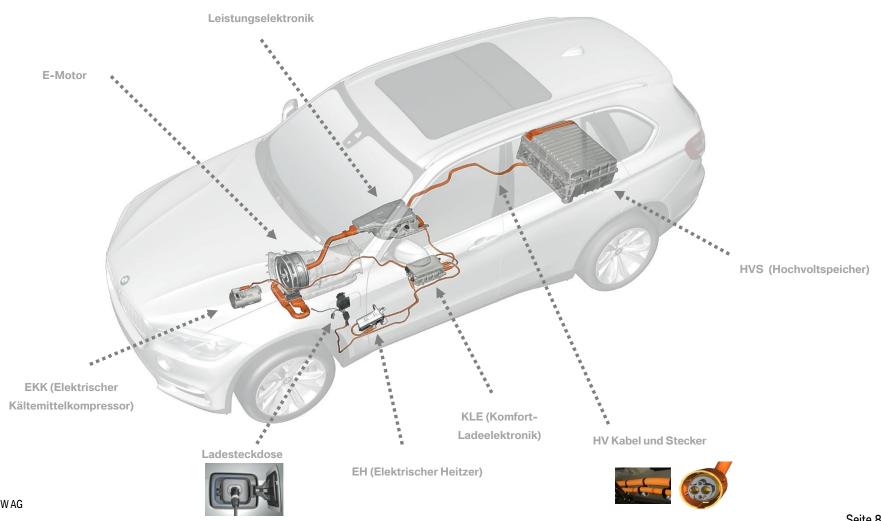
Hinweis: Das Fehlen dieser Kennzeichen ist jedoch kein eindeutiges Indiz dafür, dass es sich um ein Fahrzeug ohne ein HV-System handelt.

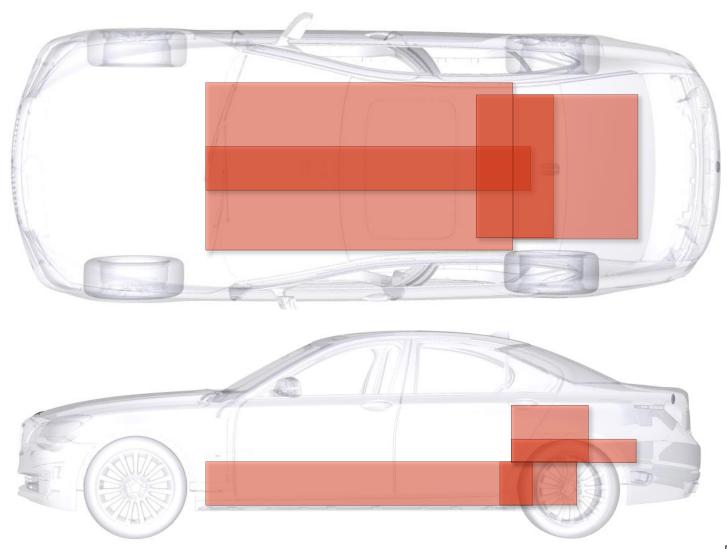
 Seit Januar 2013 ist auch in Deutschland eine Fahrzeugkennzeichenabfrage durch Rettungsleitstellen für in Deutschland zugelassene Fahrzeuge möglich, die eine eindeutige Zuordnung zum betreffenden Rettungsdatenblatt ermöglicht.

Quelle: VDA R&B

ELEKTROMOBILITÄT - CRASHSICHERHEIT. FAHRZEUGIDENTIFIZIERUNG - BEISPIELE.






ELEKTROMOBILITÄT - CRASHSICHERHEIT. HOCHVOLTKOMPONENTEN AM BEISPIEL 13.

ELEKTROMOBILITÄT - CRASHSICHERHEIT. HOCHVOLTKOMPONENTEN AM BEISPIEL X5 PHEV.

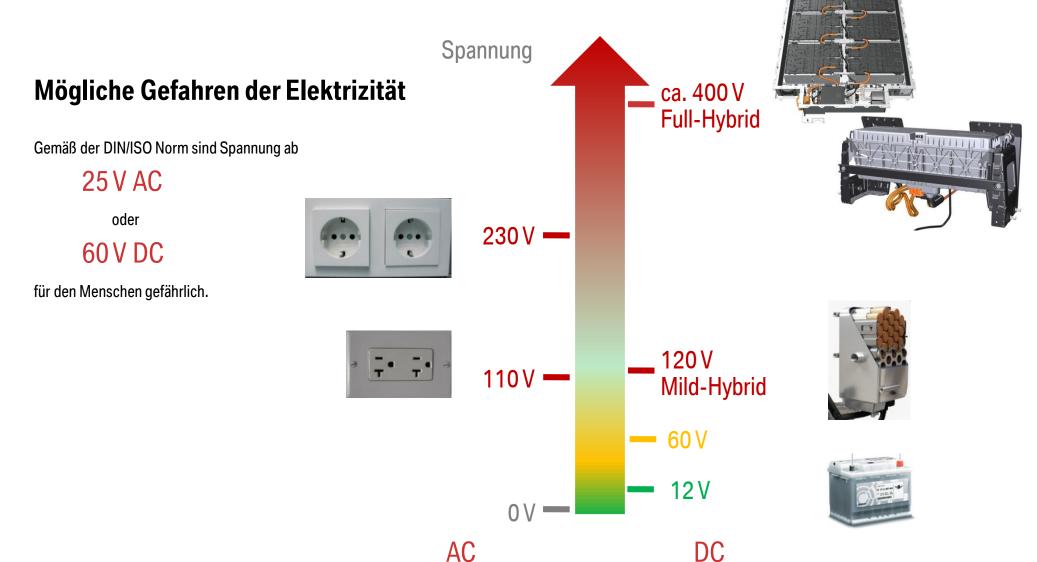
ELEKTROMOBILITÄT - CRASHSICHERHEIT. EINBAULAGEN VON HOCHVOLTSPEICHERN.

ELEKTROMOBILITÄT - CRASHSICHERHEIT. GEFÄHRDUNGEN BEI FAHRZEUGEN MIT HV-SPEICHERN.

ELEKTRISCHE GEFÄHRDUNG.

- Hochvoltspeicher bei meisten Unfällen außerhalb des Crash-Bereiches.
- System eigensicher, Verbindung zum Hochvoltspeicher wird in der Regel bei Unfällen getrennt.
- Keine leitfähige Verbindung zwischen Hochvoltleitungen und Karosserie.

THERMISCHE GEFÄHRDUNG.


- Explosion von Hochvoltspeicher im Brandfall mit an Sicherheit grenzender Wahrscheinlichkeit auszuschließen.
- Mechanische Sicherheitseinrichtungen sichern gezielt die Ausgasung bei Temperatur- und Druckanstieg.
- DEKRA: "Elektroautos (...) mit Lithium-Ionen-Antriebsbatterien sind im Brandfall mindestens genauso sicher wie Fahrzeuge mit konventionellem Antrieb."

TOXISCHE GEFÄHRDUNG.

- Brandgase sind grundsätzlich reizend, brennbar und gesundheitsschädlich und dürfen nicht eingeatmet werden.
- Gesundheitliche Gefährdung ansonsten nicht höher als bei konventionellen Fahrzeugen.

ELEKTROMOBILITÄT - CRASHSICHERHEIT. ELEKTRISCHE GEFÄHRDUNG.

ELEKTROMOBILITÄT - CRASHSICHERHEIT. GEFÄHRDUNG DURCH ELEKTRISCHEN SCHLAG.

- Eine Personengefährdung durch einen elektrischen Schlag ist mit hoher Wahrscheinlichkeit auszuschließen.
- Die Fahrzeuge sind mit mehreren, verschiedenartigen Schutzmechanismen ausgestattet.

Mechanische Schutzkonzepte

- Berührschutz durch schutzisolierte HV-Komponenten
- Erkennung von HV-Komponenten
- 4

Elektrische Schutzkonzepte

- Berührschutz durch vollständig Isoliertes HV-Netz (Schutztrennung gegen Karosse)
- Sichere Außerbetriebnahme des HV-Systems
- μС

Logikgesteuerte Schutzkonzepte

- Automatische Überwachung und Abschaltung des HV-Systems
- Im Zweifelsfall ist das HV-System des Fahrzeugs sofern möglich manuell zu deaktivieren (Service Disconnect) und gegen Wiedereinschalten zu sichern.

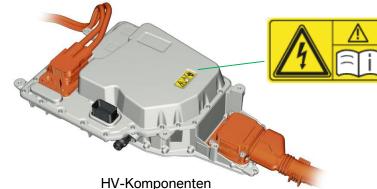
ELEKTROMOBILITÄT - CRASHSICHERHEIT. MECHANISCHE SCHUTZKONZEPTE.

Mechanische Schutzkonzepte

• Berührschutz durch vollständig schutzisolierte HV-Komponenten

- Gehäusekonstruktion und Verortung des Hochvoltspeichers
 - Alle Hochvolt-Komponenten sind so positioniert, dass sie erst bei äußerst schweren Unfällen beschädigt werden
 - Hochvoltbatterie liegt bei den meisten Unfällen außerhalb des Crash-Bereichs
 - Entgasungsklappen in den einzelnen Lithium-lonen- Zellen
 - Entgasungsöffnung in der Hochvoltbatterie
 - Dadurch gezielte "Ausgasung" und Druckentlastung

Kennzeichnung aller HV Komponenten

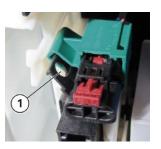


Orange HV-Leitungen

Orange HV-Stecker

ELEKTROMOBILITÄT - CRASHSICHERHEIT. ELEKTRISCHE SCHUTZKONZEPTE.

Elektrische Schutzkonzepte


- •Isoliertes IT-Netz (HV+ / HV- sind gegen Karosse isoliert)
 - Komplettes Hochvoltnetz ist ein in sich geschlossenes System und berührgeschützt ausgeführt
 - Es ist vollständig isoliert und hat keine leitfähige Verbindung zu Karosserie

Crash!

- Hochvoltrennstelle (Trennschalter / Schneidlösung)
 - Zusätzliche Abschaltvorrichtung für das HV-System, kann von Rettungskräften verwendet werden.
 - Es handelt sich um 12V-Trennstellen, die auch von Nicht HV-Fachkräften betätigt werden können.
 - Der HV-Energiespeicher wird hierdurch vom HV-System elektrisch getrennt.
 - Die empfohlene Vorgehensweise zur manuellen Deaktivierung beschreibt das Rettungsdatenblatt des jeweiligen Herstellers

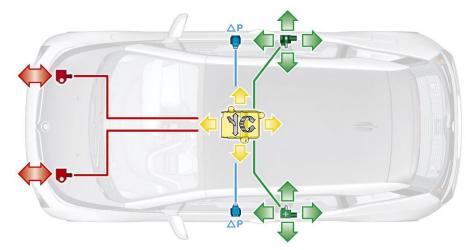
Trennschalter

Schneidlösung

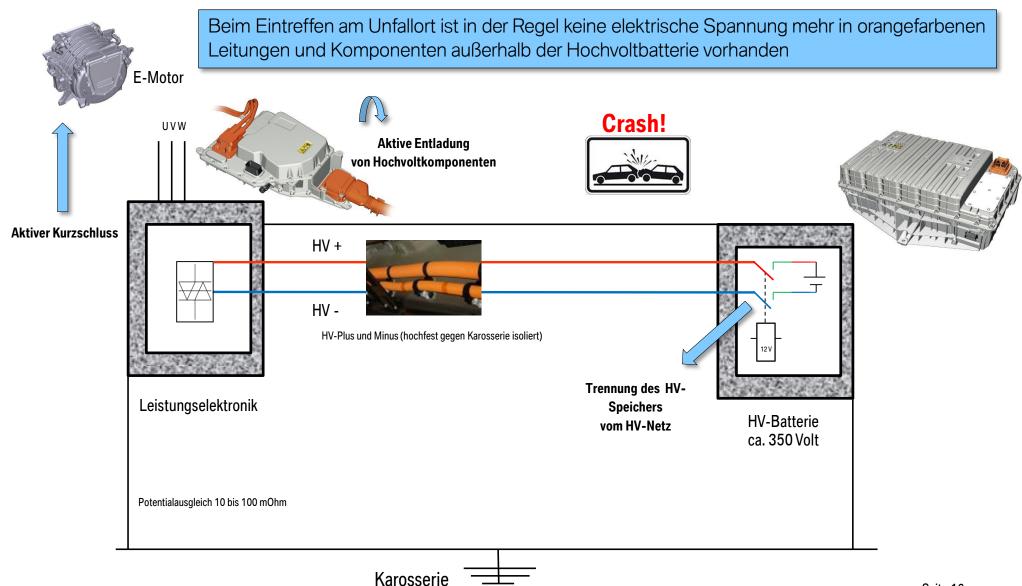
- Zwischenkreisentladung
 - Automatisches, sekundenschnelles Entladen der Leitungen und Komponenten außerhalb der Hochvoltbatterie
- •HV-Interlock (Stecker mit voreilendem Steuerkontakt)

ELEKTROMOBILITÄT - CRASHSICHERHEIT. LOGIKGESTEUERTE SCHUTZKONZEPTE.

μС


Logikgesteuerte Schutzkonzepte

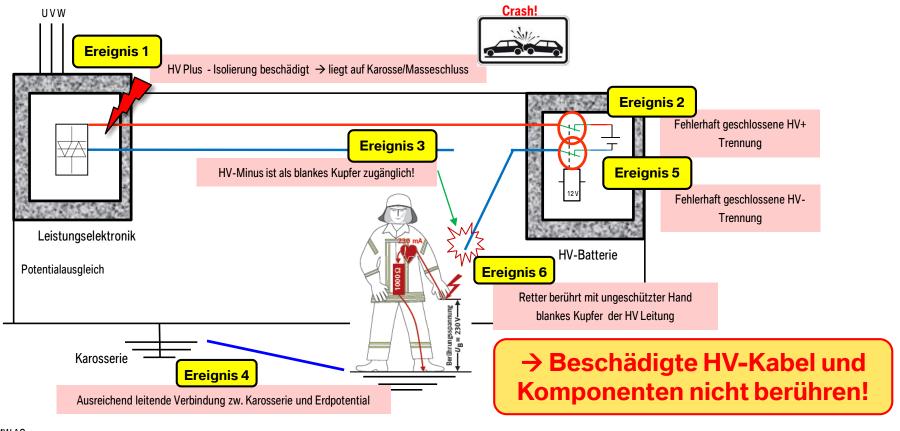
- Speicher-/Ladeüberwachung
- Isolationsüberwachung


Crash!

- aktive Kurzschlusssteuerung der E-Maschine
- Crashabschaltung des Hochvoltsystems
 - Hochvoltsystem schaltet sich bei Unfällen von selbst ab
 - Automatisches, sekundenschnelles Entladen der Leitungen und Komponenten außerhalb der Hochvoltbatterie

ELEKTROMOBILITÄT - CRASHSICHERHEIT. CRASHABSCHALTUNG.

Quelle: BMW AG
Seite 16


ELEKTROMOBILITÄT - CRASHSICHERHEIT. FEHLER TOLERANZ NACH EINER UNFALLSITUATION.

Das Hochvoltsystem ist im Crashfall fehlertolerant.

Durch den Grundsatz:

- Beschädigte HV-Kabel und Komponenten nicht berühren und
- Persönliche Schutzausrüstung tragen

kann eine Gefährdung durch Stromschlag zusätzlich vermieden werden.

Quelle: BMW AG

ELEKTROMOBILITÄT - CRASHSICHERHEIT. FAZIT – ELEKTRISCHE GEFÄHRDUNG.

DREIFACHE SICHERUNG DES HOCHVOLTSYSTEMS: ABSCHALTEN, TRENNEN, ENTLADEN.

ABSCHALTEN.

Automatisches Abschalten des eigensicheren Hochvoltsystems bei Unfällen.

TRENNEN.

Trennung der Hochvoltbatterie vom Hochvoltnetz. Dadurch liegt in der Regel in den Hochvoltleitungen außerhalb der Hochvoltbatterie keine elektrische Spannung mehr an.

ENTI ADEN.

Entladung der Leitungen und Komponenten. Danach ist gesamtes Hochvoltnetz spannungsfrei.

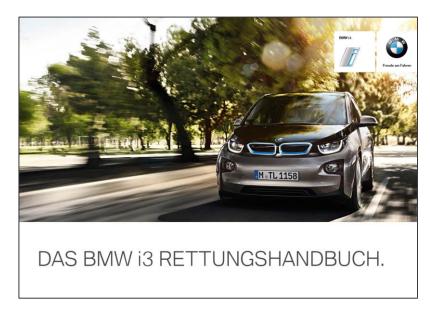
EINE ELEKTRISCHE GEFÄHRDUNG KANN GRUNDSÄTZLICH AUSGESCHLOSSEN WERDEN. DAFÜR SORGEN WEITERE SICHERHEITSMASSNAHMEN:

- Das ganze Hochvoltsystem ist vollständig isoliert und hat keine leitfähige Verbindung zur Karosserie.
- 2 In der Regel können Sie die Karosserie beruhren, ohne sich einer elektrischen Gefährdung auszusetzen.
- 3 Die Hochvoltbatterie ist sicher platziert und so vor hohen Belastungen geschutzt.

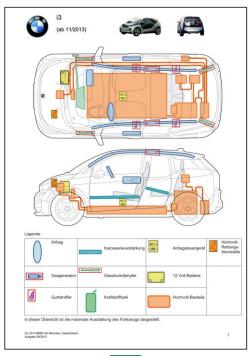
ELEKTROMOBILITÄT - CRASHSICHERHEIT. FAZIT.

E-FAHRZEUGE SIND MINDESTENS SO SICHER WIE KONVENTIONELLE FAHRZEUGE.

HÖCHSTE SICHERHEIT BEIM RETTEN FÜR INSASSEN UND RETTUNGSKRÄFTE:


- Eigensicheres System schutzt vor elektrischer Gefährdung
- Sicherheitsmaßnahmen schützen vor thermischer Gefährdung
- Toxische Gefährdung ohne signifikanten Unterschiede zu herkömmlichen Fahrzeugen

LITHIUM-IONEN-BATTERIEN ERFÜLLEN HOHE SICHERHEITSSTANDARDS BEI BRÄNDEN:


• Lithium-lonen-Batterien erweisen sich in Löschversuchen auch im Brandfall als sicher

RETTUNGSKARTE UND RETTUNGSLEITFADEN SIND IN KONKRETEN UNFALLSITUATIONEN VERBINDLICH.

ELEKTROMOBILITÄT - CRASHSICHERHEIT. RETTUNGSDATENBLATT, -LEITFADEN UND -HANDBUCH.

Handbuch für den allgemeinen Überblick.

Rettungsleitfaden

Information für Einsatzkräfte Mai 2014

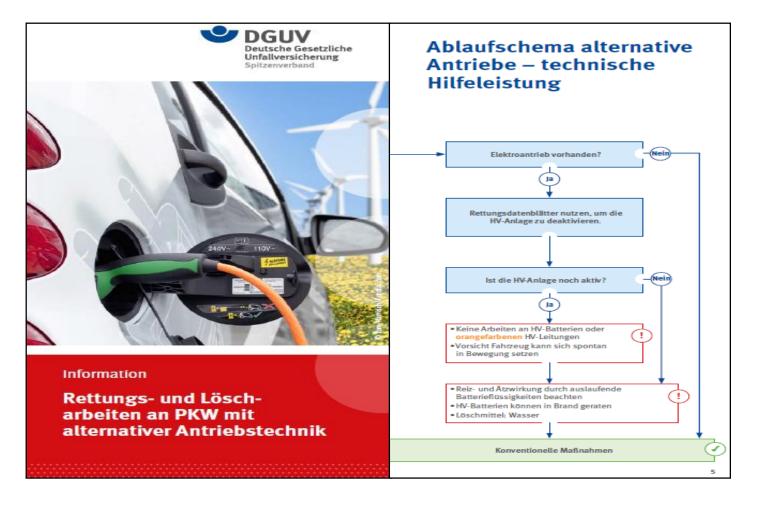
Rettungsdatenblatt und Rettungsleitfaden für detaillierte und

verbindliche Anweisungen in konkreten Unfallsituationen. https://oss.bmw.de/index.jsp

ELEKTROMOBILITÄT - CRASHSICHERHEIT. VDA UNFALLHILFE RETTEN UND BERGEN.

Unfallhilfe & Bergen bei Fahrzeugen mit Hochvolt-Systemen

Antworten auf häufig gestellte Fragen / FAQ (Frequently Asked Questions)


INHALT (KOMPAKT AUF 10 SEITEN):

- ERKUNDUNG/FAHRZEUGIDENTIFIZIERUNG
- GEFÄHRDUNG DURCH ELEKTRISCHEN SCHLAG
- GEFÄHRDUNG DURCH HV-ENERGIESPEICHER
- CHEMISCHE GEFÄHRDUNG
- THERMISCHE GEFÄHRDUNG (BRAND)
- ELEKTRISCHE LADE-INFRASTRUKTUR
- FAHRZEUGE IM WASSER
- ABSCHLEPPEN, BERGEN, TRANSPORTIEREN, PANNENHILFE UND ABSTELLEN
- WEITERE INFORMATIONEN

https://www.vda.de/de/themen/sicherheit-und-standards/retten-und-bergen/unfallhilfe-und-bergen-bei-fahrzeugen-mit-hochvolt-systemen.html

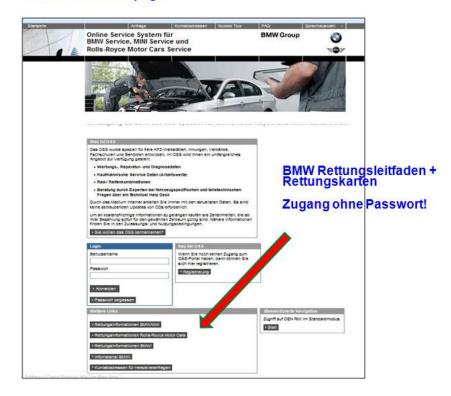
ELEKTROMOBILITÄT - CRASHSICHERHEIT. DGUV RETTUNGS-/LÖSCHARBEITEN ABLAUFSCHEMA.

Link zur DGUV: http://publikationen.dguv.de/dgu v/pdf/10002/i-8664.pdf

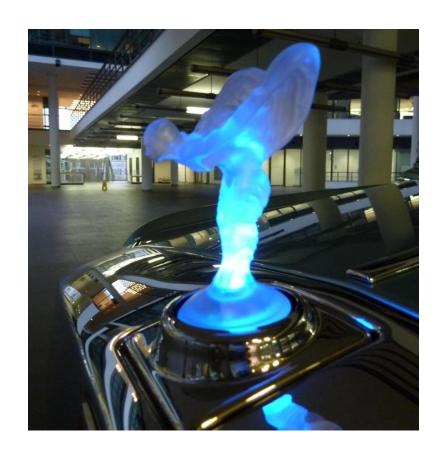
ELEKTROMOBILITÄT - CRASHSICHERHEIT. RETTUNGSINFORMATIONEN - LINKS.

VDA:

Retten und Bergen https://www.vda.de/de/themen/sicherheit-und-standards/retten-und-bergen/unfallhilfe-und-bergen-bei-fahrzeugen-mit-hochvolt-systemen.html


DGUV:

Rettungs-und Löscharbeiten an PKW mit alternatien Antrieben http://publikationen.dguv.de/dguv/pdf/10002/i-8664.pdf


BMW Online Service Portal: Rettungsinformationen und Rettungskarten https://oss.bmw.de/index.jsp

Den Rettungsleitfaden – Informationen für Einsatzkräfte (umfangreiches Dokument für alle BMW-Fzg.) finden sie in jeder Rubrik – Rettungsinformationen ...

BMW OSS Homepage

ELEKTROMOBILITÄT - CRASHSICHERHEIT. VIELEN DANK FÜR IHRE AUFMERKSAMKEIT.

